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Complex Gyrator Circuits of Planar
Circulators Using Higher Order Modes in a

Disk Resonator

J. HELSZAJN, MEMBER, IEEE

Abstract —Tire use of resonators or wavegnides ntilizing higher order

modes is often an attractive solntion to the design of millimeter microwave

networks. This paper investigates the complex gyrator circuit of a planar

jnnction circulator employing higher order solntions in a disk resonator.

Tbe first such solution displays many of the featores of weakly magnetized

junctions using the dominant mode in a disk resonator, but its loaded

Q-factor is incompatible with the realization of quarter-wave conpled

devices. Although the second one exhibits more useful equivalent circnits,

it requires a relatively large magnetization, which is not altogether practicaf

at millimeter frequencies. A circnfator configuration that has a freqnency

response akin to tfmt of a qnarter-wave coupled one is one where the

in-phase eigennetwork is degenerate with those of the demagnetized coun-

ter-rotating eigennetworks. The degeneracy between the in-phase limit,

TM ~,o,_ z, and the second-order counter-rotating limit, TM ~,,, _ ~ modes,

in an oversized irregular hexagonal resonator, is used in this paper to

construct such a device.

I. INTRODUCTION

o NE MODEL of a junction circulator is in terms of a

symmetrically magnetized ferrite resonator symmet-

rically coupled by three transmission lines. Although the

lowest order mode in the resonator is usually employed in

circulator design, the possibility y of using higher solutions is

also well understood [1]–[3]. The purpose of this paper is

to determine the complex gyrator circuit and network

problem of such a junction using a simple disk resonator in

terms of its gyrator conductance (G), susceptance slope

parameter (B’), and loaded Q-factor (Q~). These solutions

are defined with the off-diagonal element of the tensor

permeability (K) in the interval O < K < ().0() and ().40< K <

0.80. In the vicinity of the origin, for very weakly mag-

netized resonators, the relationships between the coupling

angle (+), the off-diagonal entry of the tensor permeability

(K), and the loaded Q-factor (Q~) conform to that of the

dominant solution [4]. The main difference between them

is that whereas the complex gyrator circuit of the dominant

mode can be adjusted to exhibit a wide range of loaded

Q-factors, this circuit has a minimum value for this quan-

tity of about 12. Examination of the network problem

[5]-[7] indicates that such a value of loaded Q-factor is

incompatible with the synthesis of quarter-wave coupled

devices. However, the second higher order solution exhibits
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equivalent circuits and values of loaded Q-factor that are

suitable for the synthesis of quarter-wave coupled junction

circulators with modest specifications.
A circuit topology that has a frequency response akin to

that realizable with a single quarter-wave transformer is

obtained by resonating the usually nonresonant in-phase

mode in some way to the degenerate counter-rotating ones

or by seeking some natural degeneracy between them

[8]-[11]. One such degeneracy between a pair of second

higher order modes and an in-phase one is in fact encoun-

tered in an irregular hexagonal resonator [12]. This paper

includes the experimental development of such a circulator

and the derivation of the network problem.

II. (20MPLEX GYRATOR CIRCUIT

The frequency response of the dominant circulation

solution of a junction circulator using a disk resonator is

usually formed by describing the eigennetworks of the

junction in terms of the first seven resonator modes. The

schematic diagram of the junction discussed here is de-

picted in Figs. 1 and 2. To cater to the proximity of the

n = ~ 4 modes to the n = ~ 2 ones, these are included in

the description of the boundary conditions

z?=zo+z+3+z_~ (1)

.z+=z+l+z-~+z+4 (2)

z-=z_1+z+2+z_4. (3)

The poles Z. of the eigenvalues ZO, Z+, and Z- have the

usual form given in [13]. The corresponding eigennetworks

are illustrated in Fig. 3.

The complex gyrator impedance of the junction at port 1

obtained by decoupling port 3 from port 2 is

Z;*
Zin=lt+jx=zll-y

13

(4)

and the complex gyrator admittance is given by

~n=&=G+jB. (5)
m

The relationships between the eigenvalues 2°, Z+, and Z-

and the open-circuited parameters Zll, 212, and Zlq are
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Fig. 1. Schematic diagram of stripline circulator using a disk resonator.
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Fig. 2. Physical variables of stnpline circulator using a disk resonator.

also given in [13] and elsewhere by

~ =Zo+z++z”
11 3

(6)

z = 2° + Z+ exp(jn2m/3)+ Z- exp(– -j2nn/3)
12 3

(7)

z = ZO + Z+ exp(– jrz2n/3)+ Z-exp(j27rF2/3)
13 3

. (8)

n is taken as 2 for the second-order solution.

The one-port complex gyrator circuit is completely de-

termined by its gyrator conductance (G), its susceptance
slope parameter (B ‘), and by its loaded Q-factor ( Q~ ). The

planar circuit is defined by the coupling angle (i), the

off-diagonal element of the tensor permeability(K), and by

the wavenumber (kR). The variables in the physical prob-

lem are

sin+=~ (9)

(lo)

[

y= Somln (w’+2H+t) -’
r 1W+t -

(12)

z~ z .3 z.~ 1-———————
7

Fzoyo~o
,,

z+, z.~ z.~ J--—----
1

r I
z +,Y Ts+

z., z.? z .4
t-

—- —— --

r
Fig

I z-ry:,-

3. Eigennetworks of three-port junction circulators.

For a saturated material

~,ff ‘1– K2 (13)

~=1 (14)

yh’lo
K=—

/loLo “
(15)

y is the gyromagnetic ratio (2.21X 105 (rad/s)/(A/m)), M.

is the saturation magnetization (T), p. is the free-space

permeability (47 x 10-7 H/m), u is the radian frequency

(rad/s), A. is the free-space wavelength (m), and Cf is the
relative dielectric constant of the ferrite material.

III. SECOND-MODE CIRCULATION SOLUTION

Table I displays the complete second-order circulation

solution for K between O and 0.40 and psi equal to 0.10,

().2(), ().30, and 0.35. It is defined by the interval ()< K <

0.40, and this is the range tabulated here [1], [3]. In this

interval, the gyrator conductance increases from O at K = O

to some maximum value, and then decreases back to zero

at K, approximately equal to ().40. The negative gyrator

conductance exhibited by the circuit merely implies that

this mode circulates in the opposite direction to that of the

dominant one. Outside this range, the direction of circula-

tion reverses. The variation of G in these tables has the

nature of the data in [1], [3]. The relationship between the

loaded Q-factor and the magnetic variables follow directly

from that of the gyrator variable. This quantity exhibits a

minimum value (approximately 12) at the magnetic state

where the gyrator conductance is a maximum. Closed-form

solutions may be derived in the vicinity of the origin by
writing (1) thru (3) as

.ZO=()

Z’=Z+2

z“=z_2

and the two circulation conditions

(16)

(17)

(18)

obtained by setting
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TABLE I

K

0.025

0.050

0.075

O.lco

0.125

0.150

0.175

0.202

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

kR

3.0619

3.0825

3.1115

3.1449

3.1800

3.2152

3.2497

3.2829

3.3143

3.3438

3.3710

3.3957

3.4172

3.4347

3.446o

3.4476

K

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.2C0

0.225

0.250

0.275

0.300

0.325

0.350

0.375

3.4C0

kR G

-0.0228

-0.0429

-0.0592

-0.0717

-0.0809

-0.0874

-0.0914

-0.0933

-0.0930

-0.0906

-0.0859

-0.0785

-0.0680

-0.0534

-0.0337

-0.0080

B’

0.7355

0.7794

0.8339

0.8892

0.9421

0.9918

1.0388

1.0834

1.1252

1.1630

1.1948

1.2165

1.2221

1.2024

1.1446

1.0406

Q

32.2757

18.1650

14.0903

12.4037

11.6395

11.3478

11.3605

11.6138

12.0958

12.834.9

13.9084

15.4877

17.9717

22.4979

33.9263

130.6242

G B’

0.2731

0.2893

0.3097

0.3306

0.35o5

0.3692

0.3869

0.4035

0.4190

0.4332

0.4451

0.4538

0.4568

0.4512

0.4322

0.3973

Q

32.25o7

18.1305

14.0565

12.3734

11.6082

11.3075

11.3CCK3

11.5197

11.9519

12.6195

13.5923

15.0253

17.2870

21.4337

32.0380

123.3907

-0. C!085

-0.0160

-0.0220

-0.0267

-0.0302

-0.0327

-0.0342

-0.0350

-0.0351

-0.0343

-0.0327

-0.0302

-0.0264

-0.0211

-0.0135

-0. c032

3.0624

3.0842

3.1147

3.1494

3.1856

3.2215

3.2562

3.2892

3.32o1

3.3487

3.3748

3.3981

3.4182

3.4343

3.4448

3.4471

* = 0.1* = 0.3

K

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

o.3cm

0.325

0.350

0.375

0.4c0

kR

3.0617

3.0818

3.1103

3.1432

3:1779

3.2129

3.2473

3.28o4

3.3121

3.3418

3.3695

3.3947

3.4168

3.4348

3.4466

3.4479

G

-0.0076

-0.0143

–0.0198

-0. 024c

-0.0271

–0.0294

-0.030E

-0.0316

-0.0316

-0.031C

-0.0297

-0.0275

-0.0242

-0.0193

-0.0125

-0. C423C

K

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.203

0.225

0.250

0.275

0.3IX

0.325

0.350

0.375

0.4C0

m

3.0622

3.0835

3.1135

3.1477

3.1834

3.2190

3.2537

3.2868

3.3179

3.3469

3.3734

3.3972

3.4179

3.4344

2.4453

3.4473

G

-0.0119

-0.0223

-0.0308

-0.0374

-0.0422

-0.0456

-0.0477

-0.0487

-0.0487

-0.0475

-0.0451

-0.0414

-0.0360

-0.0284

-0.0181

-o. cm43

B’

0.3828

0.4056

0.4342

0.4632

0.4908

0.5168

0.5414

0.5646

0.5863

0.6061

0.6226

0.6342

0.6377

0.6280

0.5995

0.5469

Q

32.2691

18.1557

14.0831

12.3985

11.6341

11.3389

11.3437

11.5838

12.0465

12.7580

13.7929

15.3165

17.7154

22.1cHJ4

33.2012

127.7411

B’

0.2447

0.2591

0.2774

0.2962

0.3142

0.3311

0.3470

0.3620

0.376O

0.3887

0.3997

0.4076

0.4108

0.4062

0.3905

0.3610

Q

32.2367

18.1083

14.0321

12.3487

11.5827

11.2783

11.2635

11.4711

11.8844

12.5253

13.4589

14.8345

17. ce73

21.0052

31.2772

120.4850

ti = 0.35 * = 0.2

B = O (or X = O) and evaluating G(or R) are given by The resonant frequency is determined by

(23)
(19)

J;(kR)=O

or

kR = 3.04. (24)

The approximate closed-form solutions given here are in

keeping with the numerical data in Table I for K between O

and 0.075.

In addition to the network description of the complex

gyrator circuit, it is also necessary to verify that its

frequency response is compatible with its loaded Q-factor.

Fig. 4 illustrates one typical response. Although these

circuits are not, in general, particularly well behaved over

an extended frequency interval, a more serious shortcom-

ing of these solutions is that the loaded Q-factors exhibited

by them lead to unrealizable impedance levels for the

junctions. Taking the case illustrated in Fig. 4 in conjunc-

tion with a single transformer circuit, as an example, gives

2Tq
B= HJ;( kR )

3Gsin2~ JI(kR) “
(20)

The susceptance slope parameter and loaded Q-factor are

readily evaluated in terms of the preceding equations as

7rYf
B,= [1(kR)2-4

3~sin2~ kR
(21)

[1QL= (kR)’-’f e

4fi ~“
(22)
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Fig. 4. Frequency response of complex gyrator circuit for first higher
order circulation solution with K = 0.175,+= 0.020, and kR = 3.2537.

the following variables for the network problem [7]:

Q~ = 11.344

S(min) = 1.05

S(max) = 1.20

W’= 0.058

G = 2.769 (S)

~ =1.161 (S).

The value of Y, required here is obviously incompatible

with good engineering practice.

S(min) and S(max) are the minimum and maximum

values of the VSWR, and W is the normalized bandwidth.

IV. THIRD-MODE CIRCULATION SOLUTION

The third circulation solution in a junction circulator

using a disk resonator is defined with the magnetic variable

K in the interval 0.40 s K <0.80. over a limited combina-

tion of the variables K, ~, and kR, this solution, unlike the

second-order one, exhibits some useful equivalent circuits

and values of loaded Q-factor for the synthesis of quarter-

wave coupled devices. The direction of circulation of this

mode is the opposite sense to that of the second-order

mode. Table II depicts some typical results. The range of

values of loaded Q-factors exhibited by this solution is

appropriate for the synthesis of quarter-wave coupled de-

vices with modest specifications. Although the frequency

responses of all these circuits are not particularly well

behaved, some useful solutions are to be located within this

field. One such solution is illustrated in Fig. 5. Taking this

result as an example leads to the following network prob-

lem:
Q = 2.093

S’(min) = 1.060

S(max) = 1.100

w= 0.193

G = 0.119 (S)

~ = 0.048 (S).

This network solution exhibits a more useful bandwidth

(W) and an acceptable admittance level (~). However, the

required normalized magnetization is somewhat on the

large side to be useful as millimeter frequencies.

Fig. 6 illustrates the relationship between Q~ and K for

~ = 0.35 for the first two higher order circulation solutions.

V. SYNTHESIS OF JUNCTION CIRCULATORS USING

RESONANT IN-PHASE EIGENNETWORKS

The in-phase eigennetwork of a three-port junction

circulator may often be idealized by a frequency-indepen-

dent short-circuit boundary condition at its input termi-

nals, but may also be adjusted to either exhibit a series or

shunt resonance there [8]–[11]. The synthesis of the former

problem is well understood, but only one of the latter cases

has been described in the literature [11]. The two eigen-

value diagrams applicable here are illustrated in Figs. 7(a)

and (b). The equivalent circuit exhibited by the data in

Tables I and II is an example of the former situation.

Approximate equivalent circuits for the latter two situa-

tions may be readily realized from a knowledge of their

complex gyrator immittances. In the case for which SO= – 1,

it is appropriate to employ open-circuit parameters in

forming the complex gyrator immittance. The result is [13]

Zin =
8Z0–(Z++Z-) +j(z+-z-)

6 26 “
(25)

In obtaining this result, the in-phase eigenvalue 2° has

been idealized by a short-circuit boundary condition in

forming the real part of the gyrator immittance. This

impedance is readily realized in the form indicated in Fig.

8 by writing Zi. as

Zin=zl+; (26)
1

where

420
z,=—

3
(27)

Y=(Y++Y-) +jw(Y+ -Y-)
1 2 2“

(28)

An equivalent result has been derived in [11] in terms of

the reflection scattering variable Sll and its derivative, but

the approach used here is more straightforward. The equiv-

alent circuit in Fig. 8 reduces to the usual approximation

by omitting the ZO term in the previous derivation. This

circuit has the nature of a bandpass filter which may be

adjusted to display a reflection or transmission characteris-

tic akin to that of a quarter-wave coupled junction with its

in-phase eigennetwork idealized by a short-circuit boundary

condition (see below).
The realization of the gyrator circuit of a junction in the

situation where the in-phase eigennetwork exhibits a shunt

resonance at its terminals (sO = +1) proceeds in a dual

fashion to the preceding case except that short-circuit,

instead of open-circuit, parameters are employed.

Yin =
8Y0–(Y++Y-) +j(Y+-Y-)

6
(29)

26 “

This admittance may be synthesized in the form illustrated

in Fig. 9 by expressing Y,. as

Y,*= Y1++ (30)
1
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TABLE II

935

I
K

0.4075

0.4250

0.4500

0.4750

0.50C0

0.5250

0.5500

0.5750

0.60c0

0.6250

0.65c0

0.6750

0.7000

0.7250

0.7500

0.7625

KR

3.4454

3.4337

3.3992

3.3445

3.2744

3.1935

3.1051

3.0112

2.9131

2.8114

2.7066

2.5995

2.4922

2.3918

2.3192

“2. 3006

G

0.0004

0.0095

0.0228

0.0341

0.0423

0.0478

0.0514

0.0534

0.0544

0.0543

0.0531

0.0503

0.0447

0.0335

0.0131

0.0007

B,

0.3841

0.3503

0.3018

0.2595

0.2251

0.1976

0.1758

0.1582

0.1437

0.1319

0.1227

0.1180

0.1250

0.1800

0.4494

0.7629

Q

970.6861

36.7044

13.2205

7.6174

5.3248

4.1346

3.4239

2.9596

2.6419

2.4270

2.3100

2.3449

2.7980

5.3776

34.3185

1111.6253

K

O. 4075

i3. 4250

0.4500

0.4750

0. 5m0

O. 525o

0.5500

0.5750

0.6000

0.6250

0.6500

0.6750

0.7000

0.7250

0.75m

0.7625

KR G B’ Q

3.4455

3.4363

3.4o76

3.3592

3.2948

3.2191

3.1356

3.0464

2.9524

2.854o

2.7510

2.6429

2.5291

2.4116

2.3190

2.3004

0.0010

0.0234

0.0562

0.0842

0.1040

0.1168

0.1244

0.1285

0.1301

0.1296

0.1270

0.1216

0.1111

0.0880

0.0345

0.0017

1.0004

0.8962

0.7483

0.63o2

0.5470

0.4879

0.4436

0.4083

0.3780

0.3503

0.3230

0.2941

0.2657

0.2933

1.1352

2.4187

1033.2211

38.2293

13.3034

7.4887

5.2578

4.1777

3.5654

3.1761

2.9052

2.7o29

2.5433

2.4196

2.3923

3.3339

32.8578

1444.6155

$ = 0.3

* = 0.1

K

0.4075

0.4250

0.4500

0.4750

0.5cY20

O. 525o

0.5500

0.5750

0. 60CCJ

0.6250

0.6500

0.6750

0.7CC0

0.7250

0.7500

0.7625

KR

3.4453

3.4325

3.3957

3.3387

3.2664

3.1833

3.0927

2.9966

2.8965

2.7933

2.6880

2.5822

2.479o

2.3863

2.3195

2.3007

G B’ Q

KR

—

3.4454

3.4354

3.4044

3.3537

3.2871

3.2095

3.1243

3.0334

2.938o

2,8384

2.7347

2.6267

2.5147

2.4o31

2.3190

2.3005

K G B, Q

0.0004

0.0089

0.0212

0.0315

0.0392

0.0445

0.0480

0.0501

0.0511

0.0511

0.0499

0.0470

0.0412

0.0303

0.0119

0.0006

0.3499

0.3220

0.2815

0.2436

0.2102

0.1824

0.16m

0.1421

0.1278

0.1170

0.1102

0.1102

0.1258

0.1892

0.4121

0.6477

939.3312

36.2844

13.3030

7.7229

5.362o

4.1012

3.3372

2.8372

2.5o19

2.2908

2.2108

2.3471

3.0521

6.24o7

34.6862

1012.3863

0.4075

0.4250

0.4500

0.4750

0. 50c0

0.5250

0.5500

0.5750

0.6000

0.6250

0.6500

0.6750

0.7000

0.7250

0.7500

0.7625

0.0005

0.0126

0.0303

0.0453

0.0561

0.0631

0.0674

0.0698

0.0709

0.0707

0.0692

0.0660

0.0597

0.0462

0.0181

0.0009

0.5265

0.4747

0.4005

0.3405

0.2960

0.2631

0.2377

0.2172

0.1999

0.1844

0.1702

0.1571

0.1494

0.1874

0.6057

1.1783

992.0298

37.5908

13.2208

7.5195

5.2814

4.1698

3.5259

3.1099

2.8210

2.6104

2.4594

2.38oo

2.5034

4.0531

33.4755

1288.0047
* = 0.35

$ = 0.2

t- 1

I-f=j
/

,,J’
.,,

----- —_ .+---..>---~,
.,.._ ————--—— 1,

,,r

I——+- -——--t

This network is the dual of the preceding one and may also

be arranged to display a frequency response akin to that of

a conventional quarter-wave coupled device.

The filter prototype in Fig. 8 maybe adjusted to exhibit

a Chebyshev frequency response provided the following

relationships are satisfied [14]:

Q = fi(S(ma~)-~)’/’
P w

(33)

Q,= S(max) .Qp (34)
Fig. 5. Frequency response of complex gyrator circuit for second higher

order CirCUhtiOn solution with K = 0.60, + = 0.450, ~d kR = 2.855,

1

g = S(max)
(35)

where

4% S(min) =1.0.
Y1=— (31)

g is the normalized gyrator conductance, Q, and QP are

J;++z-) +jfi(z+-z-) the loaded Q-factors of the series and shunt resonators in
1 2 2 -“ (32) Fig. 8.
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Fig. 6. Loaded Q-factors for first two higher order solutions of junction
circulator using disk resonator for $ = 0.35.

Fig. 7. Eigenvafue diagrams of j&ction circulators with so = + 1
and –1.

Taking the value of Q~ used in the example for the

second-order solution leads tothefollowing network varia-

bles for the device:

S(max) = 1.20

w= 0.050

QP=12.60

Q~=15.10

g= 0.83 (G= 0.017).

‘ Zin

Fig. 8. Complex gyrator circuit of junction circulator with so = – 1.

I yin

Fig. 9, Complex gyrator circuit of junction circulator with so = +1.

This solution displays a similar frequency response to that

of the quarter-wave coupled device employing the first

higher order solution in a disk resonator, but with a more

realizable impedance level for the junction.

VI. THI&E-RESONANT MODE CIRCULATOR USING

HIGHER ORDER MODES IN PLANAR IRREGULAR

HEXAGONAL RESONATOR

The network topologies of junction circulators using

commensurate eigennetworks have been discussed in the

previous section, but their practical adjustments have not

yet been discussed [8]–[11]. Such circulators require a

degeneracy between the in-phase and demagnetized coun-

ter-rotating modes. One such natural degeneracy is encoun-

tered between the limit TM2,0, _ ~ and TMI ~ _* modes in

an irregular hexagonal resonator. This solu;ion is particu-

larly attractive for the construction of circulators at very

high frequencies, in that it relies on an oversized resonator

for its operation. The design of the circulator discussed

here is based on the mode chart in [12], which indicates

that the TM2,0, _ ~ and TMI,I, _ ~ limit modes in an over-

sized irregular hexagonal planar resonator are degenerate.

Fig. 10 displays the frequency response of one experimen-

tal device using such a resonator. This circulator employed

an irregular-hexagonal junction directly coupled to 50-0

lines. The dimensions of this resonator corresponded to the

intersection of the TM2,0, _ ~- and TMI,I, _ ~-limit modes in

the irregular hexagonal resonator depicted in Fig. 11 with

kr = 3.90, @=260, and 8 = 94”. The coupling angle (~)

between the resonator and the uniform lines was asIJ=130
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nant pair of modes is twice that necessary to remove the

degeneracy between a pair of second-order modes, so that

the. magnetization required to achieve the three resonant,.. ,,
mode solution in Fig. 7 (using a pair of second-order

15
modes) is ideally equal to that necessary to realize a

z~ conventional device (using a pair of first-order modes).

3
20

S VII. CONCLUSIONS

~ 25 The use of resonators employing higher order modes is
30 often an attractive solution to the development of millime-

ter-wave junction devices. A detailed study of the complex
35 gyrator immittances of the first two higher order solutions

of junction circulators using disk resonators indicates that

the loaded Q-factor of the first such solution is incompati-

Fig. 10. Frequency

4,6 4.7 4.8 4.9

F’REQUEtlCY (GHz)

response of Junction circulator using magnetized

planar irregular resonator.

MAGNETIC WALL
I

e>60

0 <60

0= 120-e

Fig. 11. Schematic diagram of irregular hexagonat resonator.

and the magnetization of the garnet material was 0.0500 T.

The experimental bandwidth of the device was about 5

percent at the 25-dB points. Since the loaded Q-factors of

the TM2,0, _ ~ and TMI,I,.2 modes are not know @ this

time, no correlation between theory and measurement is

possible. However, the experimental bandwidth is con-

sistent with the values of loaded Q-factor exhibited by the

second-order solutions in Table I in the case of a disk, and

by the values used in the example in the previous section.

A similar response has been experimentally obtained in

[10].

Consideration. of the eigenvalue diagrams of circulators
with so= – 1 and + 1 in Fig. 7 indicates that the angle

between the degenerate eigenvalues in the case so= + 1

(three resonant mode circulator) is twice the value neces-

sary to realize the eigenvalue diagram for which so = – 1

(two resonant mode circulator). However, in the conven-

tional situation, the magnetization required to split a domi-

ble with the synthesis of quarter-wave coupled circulators,

but that the second one exhibits useful equivalent circuits.

A circuit topology that displays a freqpepcy characteristic

akin to that of a quarter-wave coupled junction is one in

which the in-phase eigennetwork is separately tuned to the

frequency of the counter-rotating degenerate ones. One

such degeneracy is met in an irregular hexagonal resonator

between the in-phase limit TM2,0, _ ~ mode and sgcond-

order counter-rotating limit TM1,l, _ z ones.
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Rectangular Waveguide with Two Double Ridges

D. DASGUPTA AND P. K. SAHA

Abstract —An eigenvahre equation of a generaf structure having two

arbitrary double ridges in a rectangular waveguide is derived. The cntoff

wavelengths of two speeiat cases with two symmetrically placed identical

double ridges is computed numerically and their bandwidths are compar~d.

The numencaf solution of the eigenvector is also discussed and utilized in

determining the gap impedance. As an example of the applications of such

ridged wavegnides, two varactor-tuned Gunn oscillators are briefly re-

ported.

1. INTRODUCTION

FKecently, the authors presented an analysis based on Mont-
gomery’s work [1] for determining the eigenvrdue spectrum of a
rectangular waveguide with two symmetrically placed identical
double ridges [2]. The numerical results indicated that such a
waveguide would have adequate bandwidth for application in
solid-state microwave oscillators. This structure can be gener-
alized by considering two different double ridges at arbitrary
locations in the waveguide. The structure treated in [2], [3] is then
a special case of this general configuration. Another special case
results when one of the two identical double ridges is inverted
with respect to the other. The calculations show that the latter
structure has a larger bandwidth compared to the former. In

addition, some results on the calculation of the gap impedance
are also presented. Following the analysis given in [2], we present
on~y the final matrix eigenvalue equations without going into
details.
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II. IUDGED WAVEGUIDE

The generalized double-ridged waveguide structure is shown in
Fig. l(a). Two special cases, shown in Figs. l(b) and l(c), are
referred to as” regular” and” inverted” structures, respectively.

III. THEORY

A. Matrix Eigenualue Equation

To solve the integral eigenvalue equation for TE modes by the

Ritz-Galerkin technique, the transverse electric field at the kth
aperture of the j th ridge (j, k =1,2) is expanded as

Njk

-E’’,k(y)= ~ cj~’k)cos;(y–hj).
jet) J

(1)

The resulting matrix equation for the eigenvalue kc then takes the

form

[H(kc)]C=’O. (2)

The vector C in (2) is given by

c = [ C(1!1)TC(132)TC(2$1)TC(2>2)T]~ (3)

where the superscript T denotes the transpose, [H] is a matrix
having the following partitioned form:

[1
HIH200

[H]=~gg:7. (4)

o 0 H7 H8

The eigenvalue equation is then

det [H(kc)] = O. (5)
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