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Complex Gyrator Circuits of Planar
Circulators Using Higher Order Modes 1in a
Disk Resonator

J. HELSZAJN, MEMBER, IEEE

Abstract —The use of resonators or waveguides utilizing higher order
modes is often an attractive solution to the design of millimeter microwave
networks. This paper investigates the complex gyrator circuit of a planar
junction circulator employing higher order solutions in a disk resonator.
The first such solution displays many of the features of weakly magnetized
junctions using the dominant mode in a disk resonator, but its loaded
Q-factor is incompatible with the realization of quarter-wave coupled
devices. Although the second one exhibits more useful equivalent circuits,
it requires a relatively large magnetization, which is not altogether practical
at millimeter frequencies. A circulator configuration that has a frequency
response akin to that of a quarter-wave coupled one is one where the
in-phase eigennetwork is degenerate with those of the demagnetized coun-
ter-rotating eigennetworks. The degeneracy between the in-phase limit,
TM, 4, —2, and the second-order counter-rotating limit, TM, , _, modes,
in an oversized irregular hexagonal resonator, is used in this paper to
construct such a device.

1. INTRODUCTION

NE MODEL of a junction circulator is in terms of a

symmetrically magnetized ferrite resonator symmet-
rically coupled by three transmission lines. Although the
lowest order mode in the resonator is usually employed in
circulator design, the possibility of using higher solutions is
also well understood [1]-[3]. The purpose of this paper is
to determine the complex gyrator circuit and network
problem of such a junction using a simple disk resonator in
terms of its gyrator conductance (G), susceptance slope
parameter (B’), and loaded Q-factor (Q; ). These solutions
are defined with the off-diagonal element of the tensor
permeability (k) in the interval 0 < k < 0.40 and 0.40 < k <
0.80. In the vicinity of the origin, for very weakly mag-
netized resonators, the relationships between the coupling
angle (¢), the off-diagonal entry of the tensor permeability
(x), and the loaded Q-factor (Q;) conform to that of the
dominant solution [4]. The main difference between them
is that whereas the complex gyrator circuit of the dominant
mode can be adjusted to exhibit a wide range of loaded
Q-factors, this circuit has a minimum value for this quan-
tity of about 12. Examination of the network problem
[5]-[7] indicates that such a value of loaded Q-factor is
incompatible with the synthesis of quarter-wave coupled
devices. However, the second higher order solution exhibits
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equivalent circuits and values of loaded Q-factor that are
suitable for the synthesis of quarter-wave coupled junction
circulators with modest specifications.

A circuit topology that has a frequency response akin to
that realizable with a single quarter-wave transformer is
obtained by resonating the usually nonresonant in-phase
mode in some way to the degenerate counter-rotating ones
or by seeking some natural degeneracy between them
[8]-[11]. One such degeneracy between a pair of second
higher order modes and an in-phase one is in fact encoun-
tered in an irregular hexagonal resonator [12]. This paper
includes the experimental development of such a circulator
and the derivation of the network problem.

II. CoMmPLEX GYRATOR CIRCUIT

The frequency response of the dominant circulation
solution of a junction circulator using a disk resonator is
usually formed by describing the eigennetworks of the
junction in terms of the first seven resonator modes. The
schematic diagram of the junction discussed here is de-
picted in Figs. 1 and 2. To cater to the proximity of the
n= 14 modes to the n= +2 ones, these are included in
the description of the boundary conditions

Z°=Z,+Z ,+2Z_,

1)
)
()

The poles Z, of the eigenvalues Z° Z*, and Z~ have the
usual form given in [13]. The corresponding eigennetworks
are illustrated in Fig, 3.

The complex gyrator impedance of the junction at port 1
obtained by decoupling port 3 from port 2 is

ZV=Z \+Z_,+7Z,,

Z"=Z_ +Z+Z_,.

Z
Zy3

4)

Zp,=R+jX=2, ~

and the complex gyrator admittance is given by

)

Y,=

1 .
in Z—in=G+jB.

The relationships between the eigenvalues Z° Z*, and Z~
and the open-circuited parameters Z,;, Z;,, and Z;; are
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Fig. 1. Schematic diagram of stripline circulator using a disk resonator.
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Fig. 2. Physical variables of stripline circulator using a disk resonator.

also given in [13] and elsewhere by
_Z°+z"+Z

Z, S (6)
Z%+ ZVexp(jn2w/3)+ Z" exp(— j2nw/3)

Z,= 3 (7)
Z%+ Z" exp(— jn2w/3)+ Z exp(j27n/3)

Zyy= 3 - (8)

n is taken as 2 for the second-order solution.

The one-port complex gyrator circuit is completely de-
termined by its gyrator conductance (G), its susceptance
slope parameter (B”), and by its loaded Q-factor (Q; ). The
planar circuit is defined by the coupling angle (), the
off-diagonal element of the tensor permeability (x), and by
the wavenumber (kR). The variables in the physical prob-
lem are

. w
Slnxp = ﬁ (9)
27
k= '}G €l ege (10)
Y=Y, (11)

(12)

-1
Y, = [30,”111 (_W_/LH”_)J ]

W+t

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 11, NOVEMBER 1983

’j
Z°YsT

Fig 3. Eigennetworks of three-port junction circulators.

For a saturated material

(13)

Pegr =1— K2

p=1 (14)
M

=120 (15)
Row

y is the gyromagnetic ratio (2.21 X 10° (rad /s) /(A /m)), M,
is the saturation magnetization (7'), p, is the free-space
permeability (47 X10~7 H/m), w is the radian frequency
(rad/s), A, is the free-space wavelength (m), and e +1s the
relative dielectric constant of the ferrite material.

III. SECOND-MODE CIRCULATION SOLUTION

Table I displays the complete second-order circulation
solution for k between 0 and 0.40 and psi equal to 0.10,
0.20, 0.30, and 0.35. It is defined by the interval 0 <« <
0.40, and this is the range tabulated here [1], [3]. In this
interval, the gyrator conductance increases from 0 at k=0
to some maximum value, and then decreases back to zero
at &, approximately equal to 0.40. The negative gyrator
conductance exhibited by the circuit merely implies that
this mode circulates in the opposite direction to that of the
dominant one. Outside this range, the direction of circula-
tion reverses. The variation of G in these tables has the
nature of the data in [1], [3]. The relationship between the
loaded Q-factor and the magnetic variables follow directly
from that of the gyrator variable. This quantity exhibits a
minimum value (approximately 12) at the magnetic state
where the gyrator conductance is a maximum. Closed-form
solutions may be derived in the vicinity of the origin by
writing (1) thru (3) as

Z°=0 (16)
Zt=Z,, (17)
Z ~Z_, (18)

and the two circulation conditions obtained by setting
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TABLE I
K kR G B' Q 13 kR G B' o}
0.025 [3.0619 |[-0.0085 | 0.2731 32.2507 0.025 |3.0624 | -0.0228 | 0.7355 32.2757
0,050 |3.0825 | -0.0160 | 0.2893 18.1305 0.050 | 3.0842 | -0.0429 | 0,7794 18.1650
0.075 |3.1115 | -0.0220 | 0.3097 14.0565 0.075 |} 3.1147 | -0.0592 | 0.8339 14,0903
0.100 |3.1449 | -0.0267 | 0.3306 12,3734 0.100 | 3.1494 | -0.0717| o0.8892 12.4037
0.125 13,1800 | -0.0302 | 0.3505 11.6082 0.125 |3.1856 | -0.0809 | 0.9421 11.6395
0.150 [3.2152 | -0.0327 | 0.3692 11.3075 0.150 |3.2215| -0.0874| 0.9918 11.3478
0.175 |3.2497 | -0.0342 | 0.3869 11.3000 0.175 | 3.2562 | -0.0914 | 1.0388 11,3605
0.200 |{3.2829 | -0.0350 | 0.4035 11,5197 0.200 | 13,2802 -0.0933| 1.0834 11.6138
0.225 |[3.3143 | -0.0351 | 0.4190 11.9519 0.225 [3.3201| -0.0930 | 1.1252 12.0958
0.250 |3.3438 | -0.0343 | 0.4332 12.6195 0.250 | 3.3487 | -0.0906 | 1.1630 12.8348
0.275 |[3.3710 | -0.0327 { 0.4451 13.5923 0.275 | 3.,3748 ( -0.0859 { 1.1948 13.9084
0.300 }3.3957 | -0.0302 | 0.4538 15.0253 0.300 |3.3981 1 -0.0785| 1.2165 15,4877
0.325 [3.4172 | -0.0264 | 0.4568 17.2870 0.325 | 3,4182| -0.0680 | 1.2221 17.9717
0.350 {3.4347 | -0.0211 | 0.4512 21.4337 0.350 | 3.4343 | -0.0534| 1.2024 22,4979
0.375 }3.4460 | -0.0135 | 0.4322 32.0380 0.375 §3.4448 ) -0.0337 | 1.1446 33.9263
0.400 [3.4476 | -0.0032 | 0.3973 123.3907 0.400 | 3.4471 | -0.0080 | 1.0406 130.6242
U = 0.3 v = 0.1
€ kR G B' Q K kR G B' Q

0.025 | 3.0617 -0.0076 | 0.2447 32,2367 0.025 | 3.0622{ -0.0119 | 0.3828 32.2691
0.050 | 3.0818 -0.0143 | 0.2591 18,1083 0.050 | 3.0835 | -0.0223 | 0.4056 18.1557
0.075 | 3.1103 -0.0198] 0.2774 14.0321 0.075 | 3.1135 [ -0.0308 | 0.4342 14.0831
0.100 | 3.1432 ~0.0240| 0.2962 12.3487 0.100 | 3.1477 | -0.0374 | 0.4632 12.3985
0.125 |3.1779 -0.0271} 0.3142 11.5827 0.125 { 3.1834 | -0.0422 | 0.4908 11.6341
0.150 |[3.2129 -0.0294) 0.3311 11.2783 0.150 | 3.2190 | -0.0456 | 0.5168 11.3389
0.175 |3.2473 -0.0308| 0.3470 11.2635 0.175 | 3.2537 { -0.0477 | 0.5414 11.3437
0.200 |3.2804 | -0.0316] 0.3620 11.4711 0.200 | 3.2868 | -0.0487 | 0.5646 11,5838
0.225 |3.3121 | -0.0316] 0.3760 11.8844 0.225 | 3,3179 | -0.0487 | 0.5863 12.0465
0.250 |3.3418 | -0.0310| 0.3887 12.5253 0.250 | 3.3469 | -0.0475 | 0.6061 12,7580
0.275 |3.3695 -0.0297{ 0.3997 13.4589 0.275 | 3.3734| -0.0451 | 0.6226 13.7929
0.300 [3.3947 -0.0275| 0.4076 14.8345 0.300 | 3.3972 | -0.0414{ 0.6342 15,3165
0.325 {3.4168 | -0.0242| 0.4108 17.0073 0.325 | 3.4179 | -0.0360 | 0.6377 17.7154
0.350 |3.4348 -0.0193| 0.4062 21,0052 0.350 | 3.4344 | -0.0284{ 0.6280 22.1004
0.375 [3.4466 -0.0125| 0.3905 31.2772 0.375 | 2.4453] -0.0181 | 0.5995 33,2012
0.400 |3.4479 -0.0030] 0.3610 120.4850 0.400 | 3.4473 ] -0.0043 | 0.5469 127.7411
¥ = 0.35 ¥ o= 0.2

B =0 (or X =0) and evaluating G'(or R) are given by
G 477)} Kk
V3 g (kR)sin2y &

(19)

__ 27% | J(kR)
3\perr sin2y | S5 (KR)

(20)

The susceptance slope parameter and loaded Q-factor are
readily evaluated in terms of the preceding equations as

Y,

3 (e sin2y

(kR)*—4
kR

’

(21)

(kRY’~4 |p

et (22)

QL=

The resonant frequency is determined by

J(kR)=0 (23)

or

kR =3.04. (24)

The approximate closed-form solutions given here are in
keeping with the numerical data in Table I for k between 0
and 0.075.

In addition to the network description of the complex
gyrator circuit, it is also necessary to verify that its
frequency response is compatible with its loaded Q-factor.
Fig. 4 illustrates one typical response. Although these
circuits are not, in general, particularly well behaved over
an extended frequency interval, a more serious shortcom-
ing of these solutions is that the loaded Q-factors exhibited
by them lead to unrealizable impedance levels for the
junctions. Taking the case illustrated in Fig. 4 in conjunc-
tion with a single transformer circuit, as an example, gives
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Fig. 4. Frequency response of complex gyrator circuit for first higher
order circulation solution with £ = 0.175, ¢ = 0.020, and kR = 3.2537.

the following variables for the network problem [7]:

0, —11.344
S(min) =1.05
S(max) =1.20

W =0.058
G =2.769 (S)
Y, =1.161 (S).

The value of Y, required here is obviously incompaltible
with good engineering practice.

S(min) and S(max) are the minimum and maximum
values of the VSWR, and W is the normalized bandwidth.

1V. THIRD-MODE CIRCULATION SOLUTION

The third circulation solution in a junction circulator
using a disk resonator is defined with the magnetic variable
x in the interval 0.40 <k < 0.80. Over a limited combina-
tion of the variables k, ¥, and kR, this solution, unlike the
second-order one, exhibits some useful equivalent circuits
and values of loaded Q-factor for the synthesis of quarter-
wave coupled devices. The direction of circulation of this
mode is the opposite sense to that of the second-order
mode. Table II depicts some typical results. The range of
values of loaded Q-factors exhibited by this solution is
appropriate for the synthesis of quarter-wave coupled de-
vices with modest specifications. Although the frequency
responses of all these circuits are not particularly well
behaved, some useful solutions are to be located within this
field. One such solution is illustrated in Fig. 5. Taking this
result as an example leads to the following network prob-
lem:

0 =2.093
S(min) =1.060
S(max) =1.100

W =10.193

G =0.119 (S)

Y,=0.048 (S).

This network solution exhibits a more useful bandwidth
(W) and an acceptable admittance level (Y, ). However, the
required normalized magnetization is somewhat on the
large side to be useful as millimeter frequencies.

Fig. 6 illustrates the relationship between Q, and « for
Y = 0.35 for the first two higher order circulation solutions.
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V. SYNTHESIS OF JUNCTION CIRCULATORS USING
RESONANT IN-PHASE EIGENNETWORKS

The in-phase ecigennetwork of a three-port junction
circulator may often be idealized by a frequency-indepen-
dent short-circuit boundary condition at its input termi-
nals, but may also be adjusted to either exhibit a series or
shunt resonance there [8]-[11]. The synthesis of the former
problem is well understood, but only one of the latter cases
has been described in the literature [11]. The two eigen-
value diagrams applicable here are illustrated in Figs. 7(a)
and (b). The equivalent circuit exhibited by the data in
Tables I and II is an example of the former situation.
Approximate equivalent circuits for the latter two situa-
tions may be readily realized from a knowledge of their
complex gyrator immittances. In the case for which s, = — 1,
it is appropriate to employ open-circuit parameters in
forming the complex gyrator immittance. The result is [13]

82°~(Zz*+Z7) . (zt=277)

In obtaining this result, the in-phase eigenvalue Z° has
been idealized by a short-circuit boundary condition in
forming the real part of the gyrator immittance. This
impedance is readily realized in the form indicated in Fig.
8 by writing Z,,, as

Zin = 6

(25)

1
Zin = Zl + 71 (26)
where
479
Zy=—3— 27
Yty Yty
le( 5 )+j\/§( 5 ). (28)

An equivalent result has been derived in [11] in terms of
the reflection scattering variable S;; and its derivative, but
the approach used here is more straightforward. The equiv-
alent circuit in Fig. 8 reduces to the usual approximation
by omitting the Z° term in the previous derivation. This
circuit has the nature of a bandpass filter which may be
adjusted to display a reflection or transmission characteris-
tic akin to that of a quarter-wave coupled junction with its
in-phase eigennetwork idealized by a short-circuit boundary
condition (see below).

The realization of the gyrator circuit of a junction in the
situation where the in-phase eigennetwork exhibits a shunt
resonance at its terminals (s, = +1) proceeds in a dual
fashion to the preceding case except that short-circuit,
instead of open-circuit, parameters are employed.

0 _ + - +_Y~
szSY (Y*++v )+j(Y )
6 2V3

This admittance may be synthesized in the form illustrated
in Fig. 9 by expressing Y, as

(29)

1
Y1n=Y1+—

Z (30)
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TABLE II
K KR G B' 0
© KR G B' Q
0.4075 3.4454 0.0004 0.3841 970.6861
0.4250 3.4337 0.0095 0.3503 36.7044 0.4075 3.4455 0.0010 1.0004 1033.2211
0.4500 3.3992 0.0228 0.3018 13.2205 0.4250 3.4363 0.0234 0.8962 38.2293
0.4750 3.3445 0.0341 0.2595 7.6174 0.4500 3.4076 0.0562 0.7483 13,3034
0. 5000 3.2744 0.0423 0.2251 5.3248 0.4750 3.3592 0.0842 0.6302 7.4887
0.5250 3.1935 0.0478 0.1976 4.1346 0. 5000 3.2948 0.1040 0.5470 5.2578
0.5500 3.1051 0.0514 0.1758 3.4239 0.5250 3.2191 0.1168 0.4879 4.1777
0.5750 3.0112 0.0534 0.1582 2.9596 0.5500 3.1356 0.1244 0.4436 3.5654
0.6000 2.9131 0.0544 0.1437 2.6419 0.5750 3.0464 0.1285 0.4083 3.1761
0.6250 2.8114 0.0543 0.1319 2.4270 0.6000 2.9524 0.1301 0.3780 2.9052
0.6500 2.7066 0.0531 0.1227 2.3100 0.6250 2.8540 0.1296 0.3503 2.7029
0.6750 2.5995 0.0503 0.1180 2.3449 0.6500 2.7510 0.1270 0.3230 2.5433
0.7000 2.4922 0.0447 0.1250 2.7980 0.6750 2.6429 0.1216 0.2941 2,4196
0.7250 2.3918 0.0335 0.1800 5.3776 0.7000 2.5291 0.1111 0.2657 2.3923
0.7500 2.3192 0.0131 0.4494 34,3185 0.7250 2.4116 0.0880 0.2933 3.3339
0.7625 "2.3006 0.0007 0.7629 1111.6253 0.7500 2.3190 0.0345 1.1352 32.8578
0.7625 2.3004 0.0017 2.4187 1444.6155
Y = 0.3
¥y = 0.1
K KR G B' o}
K KR G B' Q
0.4075 3.4453 0.0004 0.3499 939.3312
0.4250 3.4325 0.0089 0.3220 36.2844 0.4075 3.4454 0.0005 0.5265 992.0298
0.4500 3.3957 0.0212 0.2815 13.3030 0.4250 3.4354 0.0126 0.4747 37.5908
0.4750 3.3387 0.0315 0.2436 7.7229 0.4500 3.4044 0.0303 0.4005 13.2208
0-5000 3.2664 0.0392 0.2102 5.3620 0.4750 3.3537 0.0453 0.3405 7.5195
0.5250 3.1833 0.0445 0.1824 4.1012 0.5000 3.00m 0.0561 0.2960 5 814
0.5500 3.0927 0.0480 0.1600 3.3372 0.5250 3.2095 0.0631 0.2631 4.1698
0.5750 2.9966 0.0501 0.1421 2.8372 0. 5500 31243 0.0674 0.2377 3,559
0.6000 2.8965 0.0511 0.1278 2.5019 o.575 3.0334 0. 0698 0.2172 3. 1099
0.6250 2.7933 0.0511 0.1170 2.2908 0. 6000 2.9380 0.0709 0.1695 2.8210
0.6500 2.6880 0.0499 0.1102 2.2108 0.6250 28384 6.0707 o0.1844 2 6104
0.6750 2.5822 0.0470 0.1102 2.3471 0. 6500 2.7347 0.0692 0.1702 5 4504
0.7000 2.47%0 0.0412 0.1258 3.0521 0.6750 2.6267 0.0660 0.1571 2.3800
0-7250 2.3863 0.0303 0.1892 6.2407 0.7000 2.5147 0.0597 0.1494 2.5034
0.7500 2.3195 0.0119 0.4121 34,6862 0.7250 2.4031 0.0462 o.1874 4.0531
0.7625 2.3007 0.0006 0.6477 1012.3863 6. 7500 2 3190 0.0181 0. 6057 13,4755
X
0.7625 2.3005 0.0002 1.1783 1288.0047
¢ = 0.35
Yy o= 0.2
15 4 / . . .
. / This network is the dual of the preceding one and may also
be arranged to display a frequency response akin to that of
0% . .
; a conventional quarter-wave coupled device.
5] - . . . . JO
- The filter prototype in Fig. 8 may be adjusted to exhibit
£y =I 'r . .
SRRt a Chebyshev frequency response provided the following
-1 relationships are satisfied [14]:
- 1 5 L
1/2
-z — — 0 - V2 (S(max)—1) (33)
- 19 a 15 \ p 74
Fig. 5. Frequency response of complex gyrator circuit for second higher
order circulation solution with x = 0.60, ¢ = 0.450, and kR = 2.855. Q, = S(max)-Q, (34)
1
8= <r— o (35)
where S(max)
4Y° S(min) =1.0.
Yl = 3 (31) . .
g is the normalized gyrator conductance, Q, and Q, are
Z (zt+2727) + i3 (zt-2Z7) 1 the loaded Q-factors of the series and shunt resonators in
1= J > (32 Fgs
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Fig. 6. Loaded Q-factors for first two higher order solutions of junction
circulator using disk resonator for y = 0.35.

So

Fig. 7. Eigenvalue diagrams of junction circulators with sg=-+1
and —1.

Taking the value of Q; used in the example for the
second-order solution leads to the following network varia-
bles for the device:

S(max) =1.20
W =0.050
0, =12.60
0,=15.10

g =083 (G =0.017).

o
z

—_}

w]a

+ - * -
7 i 3———";'

in

Fig. 8. Complex gyrator circuit of junction circulator with 5o = — 1.

vin

Fig. 9. Complex gyrator circuit of junction circulator with 5o = +1.

This solution displays a similar frequency response to that
of the quarter-wave coupled device employing the first
higher order solution in a disk resonator, but with a more
realizable impedance level for the junction.

VI. THREE-RESONANT MoODE CIRCULATOR USING
HicHER ORDER MODES IN PLANAR IRREGULAR
HEXAGONAL RESONATOR

The network topologies of junction circulators using
commensurate eigennetworks have been discussed in the
previous section, but their practical adjustments have not
yet been discussed [8]-[11]. Such circulators require a
degeneracy between the in-phase and demagnetized coun-
ter-rotating modes. One such natural degeneracy is encoun-
tered between the limit TM,, _, and TM, ; _, modes in
an irregular hexagonal resonator. This solution is particu-
larly attractive for the construction of circulators at very
high frequencies, in that it relies on an oversized resonator
for its operation. The design of the circulator discussed
here is based on the mode chart in [12], which indicates
that the TM,, , and TM, ; _, limit modes in an over-
sized irregular hexagonal planar resonator are degenerate.
Fig. 10 displays the frequency response of one experimen-
tal device using such a resonator. This circulator employed
an irregular-hexagonal junction directly coupled to 50-Q
lines. The dimensions of this resonator corresponded to the
intersection of the TM, , _,- and TM, ; _,-limit modes in
the irregular hexagonal resonator depicted in Fig. 11 with
kr=3.90,¢ =26°, and § =94°. The coupling angle ()
between the resonator and the uniform lines was as ¢ =13°
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Fig. 10. Frequency response of junction circulator using magnetized
planar irregular resonator.
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Fig. 11. Schematic diagram of irregular hexagonal resonator.

and the magnetization of the garnet material was 0.0500 T.
The experimental bandwidth of the device was about 5
percent at the 25-dB points. Since the loaded Q-factors of
the TM,, _, and TM, ; _, modes are not known at this
time, no correlation between theory and measurement is
possible. However, the experimental bandwidth is con-
sistent with the values of loaded Q-factor exhibited by the
second-order solutions in Table I in the case of a disk, and
by the values used in the example in the previous section.
A similar response has been experimentally obtained in
[10].

Consideration of the eigenvalue diagrams of circulators
with s;=—1 and +1 in Fig. 7 indicates that the angle
between the degenerate eigenvalues in the case s5,=+1
(three resonant mode circulator) is twice the value neces-
sary to realize the eigenvalue diagram for which s, = —1
(two resonant mode circulator). However, in the conven-
tional situation, the magnetization required to split a domi-

937

nant pair of modes is twice that necessary to remove the
degeneracy between a pair of second- order modes, so that
the magnetization required to achieve the three resonant
mode solution in Fig. 7 (using a pair of second-order
modes) is ideally equal to that necessary to realize a
conventional device (using a pair of first-order modes).

VII. CoONCLUSIONS

The use of resonators employing higher order modes is
often an attractive solution to the development of millime-
ter-wave junction devices. A detailed study of the complex
gyrator immittances of the first two higher order solutions
of junction circulators using disk resonators indicates that
the loaded Q-factor of the first such solution is incompati-
ble with the synthesis of quarter-wave coupled circulators,
but that the second one exhibits useful equivalent circuits.
A circuit topology that displays a frequency characteristic
akin to that of a quarter-wave coupled junction is one in
which the in-phase eigennetwork is separately tuned to the
frequency of the counter-rotating degenerate ones. One
such degeneracy is met in an irregular hexagonal resonator
between the in-phase limit TM,, _, mode and second-
order counter-rotating limit TM, ; _, ones.
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Rectangular Waveguide with Two Double Ridges
D. DASGUPTA anp P. K.SAHA

Abstract —An eigenvalue equation of a general structure having two
arbitrary double ridges in a rectangular waveguide is derived. The cutoff
wavelengths of two special cases with two symmetrically placed identical
double ridges is computed rimmerically and their bandwidths are compared.
The numerical solution of the eigenvector is also discussed and utilized in
determining the gap impedance. As an example of the applications of such
ridged waveguides, two varactor-tuned Gunn oscillators are briefly re-
ported.

I. INTRODUCTION

tecently, the authors presented an analysis based on Mont-
gorery’s work [1] for determining the eigenvalue spectrum of a
rectangular waveguide with two symmetrically placed identical
double ridges [2]. The numerical results indicated that such a
waveguide would have adequate bandwidth for application in
solid-state microwave oscillators. This structure can be gener-
alized by considering two different double ridges at arbitrary
locations in the waveguide. The structure treated in [2], [3] is then
a special case of this general configuration. Another special case
results when one of the two identical double ridges is inverted
with respect to the other. The calculations show that the latter
structure has a larger bandwidth compared to the former. In
addition, some results on the calculation of the gap impedance
are also presented. Following the analysis given in [2], we present
only the final matrix eigenvalue equations without going into
details. ! »
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IL R'IDGEIV) WAVEGUIDE

The generalized double-ridged waveguide structure is shown in
Fig. 1{a). Two special cases, shown in Figs. 1(b) and 1(c), are
referred to as “regular” and “inverted” structures, respectively.

III. - THEORY

A. Matrix Eigenvalue Equatién

To solve the integral eigenvalue equation for TE modes by fthc .
Ritz—Galerkin technique, the transverse eléctric field at the kth
aperture of the jth ridge (j, k =1,2) is expanded as

N,

E.()=3

i=0

1)

Ci(f”‘)cos%(y —hy).
y ‘

The resulting matrix equation for the eigenvalue k. then takes the
form

[H(k)]C=O0. o)
The vector C in (2) is given by
C = C(l,l)TC(l,2)Tc(2,1)TC(2,2)T] T 6)

where the superscript T denotes the traﬁspose, [H] is a matrix
having the following partitioned form:

H H, 0 0

H, H, H, 0
[H]= 0 H H H @
0 0 H, H
The eigenvalue equation is then
det[ H(k,)]=0. (5)
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